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ABSTRACT 
 
This reports explains and demonstrates a simulation-based method to evaluate 
sampling plans in ecological monitoring. It is meant to provide an interdisciplinary-
team of scientists with a means to specify, conduct and analyse similar experiments 
for relevant questions, field realities and systems of interest. In the method an 
ecological reality is simulated by a model, providing a ‘truth’, and predicted back by 
different approaches. When predicting the truth back, the (incorrect) prediction 
model and sampling properties are varied. Subsequently, the deviations from the 
truth for the different model and sampling properties are analysed – in this case via 
a linear model. After presenting the abstract workflow, it is applied in two case 
studies to further clarify its details: a) the evaluation of different interpolators and 
different observation densities to observe a continuous process in the sub-littoral 
part of the Wadden Sea and b) the evaluation of two existing monitoring programs 
to describe species occurrence in the sub-littoral part of the Wadden Sea. The 
results of the two case studies are briefly discussed and the codes used for the two 
case studies are provided as an example for future applications. 
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1 INTRODUCTION 
The design and implementation of monitoring in the realm of long term ecological 
conservation and research is an area of active research where no general solutions 
exist that apply to a broad range of cases, but rather tailor-made solutions need to 
be created (e.g. Gitzen et al. 2012; Yoccoz et al. 2001). General guidelines may 
provide a direction to design an adequate monitoring plan, while more elaborate 
analysis is required to define the specifics and to evaluate the often many choices 
with (sometimes counter-intuitive) effects on monitoring outcomes. Usually this 
elaborate analysis involves the specification of monitoring aims and translation of 
practical constraints and knowledge (e.g. due to available equipment, staffing, 
dynamics of the system, prior knowledge about the system) in a coherent 
framework for statistical analysis. Once this has been achieved, a considerable 
literature exists on the statistical methodologies to design an adequate monitoring 
plan (e.g. de Guijter et al., 2006; Tompson, 2010) and by the building blocks from 
that literature relevant monitoring plans can be built. In this context, it is not the last 
step – finding an optimum plan once the complex questions and constraints 
involved in ecological monitoring have been cast in to a clean and consistent form – 
but the former step to structure the questions and constraints that form the major 
challenge. An important reason for this is that this step typically involves various 
experts with different backgrounds and different roles relating to the monitoring 
program. Hence, these different parties need to share information and develop a 
common understanding of the problem at hand. Another important reason is the fact 
that the problem is simply complex and not well-defined to start with: in the practice 
of (long term) ecological monitoring, monitoring questions can often not be defined 
very precisely, may be arbitrary to some degree, may change over time or may 
even lead to conflicting design-properties. The usual constraints on the resources 
available for monitoring (so that only a fraction of the possible system components 
could be monitored) often influence the monitoring questions implicitly. Next, 
considerable uncertainties with regard to observation accuracy of various field 
measurements (sometimes varying with environmental conditions) are common. 
And finally, there may be a general lack of knowledge about the important drivers 
and dynamics of the system under consideration.  
 
This report is aimed at this first step in particular: to share and structure knowledge 
among different actors in the design of a monitoring program in the context of 
ecological monitoring. It presents a simulation-based approach to specify and 
evaluate monitoring questions and designs. Because it is conceptually simple to 
understand, the specification of different simulations as well as the interpretation of 
the results can be understood (and perhaps also conducted) by all the actors 
involved.  
 
A monitoring plan (optimal or not) is not a goal in its own right, but forms part of a 
monitoring project where the formulation of policy, management and science goals 
and questions,  the actual monitoring effort, storage, curation and analysis of data 
and decisions based on the results are all vital parts. According to Lindenmayer and 
Likens (2010) effective monitoring programs are characterized by: 1) good 
questions; 2) a conceptual model of an ecosystem or population; 3) strong 
partnerships between scientists, policy-makers and managers; and 4) frequent use 
of data collected. Hence it is probably not the technical design of a monitoring plan 
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that contributes to the success of a monitoring program, but especially the way in 
which the monitoring plan is embedded in and providing support to these four 
characteristics. Simulation tools may help to achieve this. 
 
This report first provides a general explanation and an abstract workflow for the 
simulation-based evaluation of a monitoring plan. Next, the abstract workflow is 
clarified by applying it in two case studies. The case studies investigate questions 
about the spatial layout of shellfish monitoring in the sub-littoral part of the Dutch 
Wadden Sea. The set-up of the simulation experiments well as the most interesting 
results are shown for each case study and the software (R scripts) used for each of 
the case studies is provided in two appendices. 
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2 THE CONCEPT OF SIMULATION-BASED 
EVALUATION 

The general workflow of evaluating a specific procedure or measurement plan by 
simulation is conceptually straightforward and has been applied frequently in 
ecology (see e.g. Zurell et al. 2010). For brevity the ‘Simulation-based Evaluation of 
Monitoring’ approach will be called SEM in this document. Figure 1 sketches the 
SEM-workflow. 
 
The procedure starts with a system concept to generate a data set (alternatively 
one could also draw sub-samples from a high-quality and high-resolution data set) 
(A). The data in A is treated as ‘truth’ and subsequently a sample is drawn 
according to some technique whereby the sampling procedure may add error to the 
truth (B). On the basis of the sample the truth is estimated, using knowledge about 
the data-generating system or by (purposively) assuming an erroneous system 
representation (C). The estimated truth is then evaluated by comparing it to the real 
truth trough a criterion function (D). Finally, the relation between one or more 
criteria and various data or sampling properties is analysed (E). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Sketch of the SEM-workflow. The small letters in this figure mean the 
following: c. criterion to measure the quality of a data set relative to a reference data 
set; d. output data from a model; f. final SEM-result; i. input data for a model; m. 
model; p. model parameters and settings. The SEM-procedure generates a ‘truth’ 
data set (A), samples from this set (B), estimates on the basis of this sample and an 
assumed model (C) and evaluates the result (D).  Different combinations of truth, 
sampling and estimation can be evaluated and eventually analysed (E). 



 
A SIMULATION-BASED APPROACH TO EVALUATE SAMPLING PLANS 8 

While Figure 1 presents the concept of a SEM-workflow to provide an overview, a 
more specific list of actions is required to build a workflow for a specific case at 
hand. Such a list is given below. 
 
Definition: 

1. Specify a model that describes the distribution of a species – to generate the 
truth (model mA). This model should contain as much ecological realism as 
possible (and/or necessary), e.g. dynamic and spatially distributed inputs or 
realistic spatio-temporal heterogeneity.  

2. Specify one or more models that describe the way a population has been 
sampled (mB1 to mBS). These models should match the sampling practice as 
close as possible (e.g. realistic values for data-loss, and spatio-temporal 
support). 

3. Specify one or more models that are used to estimate the truth (mC1 to 
mCP). One extreme would be a model that is identical to the data-generating 
model (mA), whereas the other would be a model that lacks any 
representation of the underlying system such as a heuristic interpolation 
procedure. The first represents the maximum attainable accuracy under a 
given sampling plan while the latter represents the minimum accuracy that 
may be expected from the sampling plan. 

4. Specify one or more evaluation criteria to measure the aspects of the system 
that should be observed well in an eventual monitoring plan (mD1 to mDQ). 

5. Specify an analysis procedure or model (model mE) to relate each of the Q 
evaluation criteria to choices in steps 1 to 4. 

 
 
Calculation: 

6. Conduct the computer experiment:  
a. apply model mA to generate R realisations (data sets dA1 to dAR); 
b. apply each model mBs to sample from each realisation (data sets dB1 to 

dBR,S); 
c. apply each model mCp to estimate data (data sets dC1 to dCR,S,P); 
d. calculate each evaluation criterion for the dCR,S,P  data sets (evaluation 

criteria cD1 to cDR,S,P,Q). 
7. Analyse the results from the computer experiment:  

a. relate each criterion to the different treatments, i.e. different (properties of) 
sampling plans mB and models mC; 

b. rank the results of the different criteria and decide about the preferred 
combination of sampling plan(s) and model(s) to be used. 

 
In summary: the SEM-workflow comprises two main steps: definition and 
calculation. The definition-part of this workflow describes four models and an 
analysis procedure. The calculation-part sequentially applies each of the models to 
the relevant input-data and parameters and subsequently analyses the results 
through a meta-analysis. The analysis part (step 7) is typically least well defined a-
priori and may involve some explorative analysis an interactive visualization to 
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achieve a good understanding of the results and before a meta-model can be 
specified. By evaluating a number of different sampling plans for various system 
representations (and potentially also for different types of data), the procedure 
quickly leads to numerous combinations. However, if all combinations are simply 
evaluated, as in a balanced experimental design, the results can generally be 
analysed with standard linear models (step 7a) and a decision theoretic procedure 
(step 7b), which can handle large amounts of data and numerous treatment levels. 
In the two case studies that are being presented here, only one criterion is 
evaluated per SEM-experiment, and therefore step 7b is (however applicable in 
general) not considered in what follows. 
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3 SPATIAL SAMPLING OF A CONTINUOUS 
PROCESS USING ARTIFICIALLY GENERATED 
DATA 

3.1 Description 
In this case study the aim is to provide a relation between estimation-variance, 
sampling density and different interpolation methods for a spatially continuous 
process in the Dutch Wadden Sea. The process could represent a biophysical 
variable (such as salinity, sediment texture, phytoplankton biomass), which would 
be observed by spatial point sampling on a regular grid. The model used here is 
very similar to a correlation-model used in Bijleveld et al. (2012), resembling the 
autocorrelation of Nereis diversicolor density (Fig 2 in that study). 
Similar to the approach in Bijleveld et al. (2012) here it is assumed that no 
(relevant) process knowledge about the system can be incorporated into the 
models, hence interpolators without any system-information are used for estimation. 
As an evaluation criterion, the RMSE is used, based on a sample of evaluation 
points that are placed between the ‘observation points’. A quantitative summary of 
this experiment is given in Table 1. 
 
Table 1. Summary of a SEM-experiment, evaluating the effect of spacing of the 
observation grid and different interpolation models on estimation accuracy. 
 
A - Type of process:   

Continuous   Unconditional Gaussian simulation generating 20 
realizations; point-values at a grid of 100 m in the intertidal 
area of the Dutch Wadden Sea, using the following 
exponential semi-variance function:  
sv = 0.5(1-exp(-lag/2000))+0.1 

B - Sampling 
characteristics: 

  

Point sampling  
at regular grid 

 1) 500m 
2) 1000m 
3) 1500m 
4) 2000m 

C - Estimation methods:   
Interpolation and  

smoothing towards points  
 1) Linear 

2) inverse dist. weighted 
3) kriging with correct variogram  
4) kriging with an incorrect variogram  

( sv = 0.6(1-exp(-(lag/2000)2)) ) 
5) loess smoother 

D - Evaluation criteria:   
RMSE at  

evaluation points 
 At 700m, with distances of 1000m; omitting any points that 

would require extrapolating beyond the convex hull of 
observation points. 

E - Analysis:   
Linear model  Relating the evaluation criterion to 4 levels of sampling and 5 

different estimation methods 
 
  



 
A SIMULATION-BASED APPROACH TO EVALUATE SAMPLING PLANS 11 

3.2 Results 
 
The truth-data generated through unconditional Gaussian simulation generates a 
field with values ranging from approximately -4 to +4. Three examples of this field 
are shown in Figure 2. 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
 

 
 

 
 
 

 
 
 
 

 
 

 
 

 
 

Figure 2. An impression of the fields generated in Case study 1 by Gaussian 
simulation (maps a to c represent the first three out of 20 fields) 
 
 
When considering the different estimates, it becomes clear that in this case study 
the similarities are large (and declining slightly with increasing spacing of the 
observation grid). As an example, the results for linear interpolation and kriging 
(with correct variogram) are shown in Figure 3. The errors for the two interpolation 
methods are shown at the bottom (left and middle histogram) and the difference 
between the two estimates is shown in the histogram at the right. The errors for the 
different interpolators are strongly correlated (hence the narrower distribution in the 
rightmost histogram compared to the other histograms).  The pattern shown in this 
figure, strong correspondence among interpolators, is prevalent throughout all the 
estimates in this case study, with one exception: the loess smoother gives a poor fit 
and does not correspond to the (other) methods. 
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Figure 3. An example of the similarity between estimates based on a sample of the 
field on a 500 m grid via linear interpolation (b) and kriging using the correct system 
variogram (c) (the truth is shown in a). The bottom row shows the histograms of the 
residual difference for the different estimates as well as the difference between 
linear interpolation and kriging. 
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Figure 4a highlights the relatively poor performance of the loess smoother. As this 
smoother will not form an attractive estimation method in this case, and may 
obfuscate any interesting relations between interpolation method, observation 
density and RMSE, it is further omitted from the analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. a) RMSE for estimating a continuous variable by different methods. The 
poor performance of the loess smoother stands out in this case. b) the difference 
between kriging with a correct and an incorrect semi-variogram are due to the 
differences between an exponential (shown in black solid) and Gaussian (grey 
dashed) semi-variogram. The actual semi-variograms that are used for estimation 
are fitted on the available sample-data so in practice the differences are smaller. 
  
 
By considering both the effect of sampling density and interpolation method on 
RMSE, it turns out that a linear model which involves both terms with an interaction 
term, explains RMSE well (94% of the variance; residuals close to Gaussian). The 
observation density explains most of the variation in RMSE. While kriging with the 
correct semi-variogram leads on average to the lowest RMSE (especially at high 
observation densities), the differences between this method, inverse distance 
weighted interpolation, and linear interpolation are small and not relevant with 
respect to substantive questions (less than 5% of the RMSE values). Kriging with 
an incorrect variogram, however, leads to considerably higher RMSE-values (more 
than 20% of the RMSE values). The differences between the two kriging methods 
are completely due to the use of a different variance model (see Figure 4b). The 
results of this linear analysis are visualized in Figure 5 by considering each of the 
interpolators separately. 
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Figure 5. RMSE as a function of sampling density and different interpolation 
methods. For each method the results for the SEM-experiment are shown by the 
circles (the horizontal variation for the circles has been added for visualisation 
purposes) and a least squares estimate of the linear model per interpolation method 
is given by the equations and grey lines.  
 

3.3. Discussion 
The results from case study 1 show that the method to estimate a spatially varying 
process does matter (viz. loess versus the other methods) – but that one does not 
have to use the correct system representation (which will not be the case in a 
situation with real data anyway) to obtain an estimate that is close or equivalent to 
the optimum attainable. In this case, the relatively simple linear and inverse 
distance weighted interpolators gave good estimates of the property of interest.  
 
This SEM-experiment is simple and incomplete for any realistic application or 
question in relation to field-research. One would probably like to evaluate a range of 
spatial distributions (not just applying a single data generating mechanism and/or a 
single underlying variance structure), and also evaluate robustness of various 
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estimation methods in situations of missing data, different types of spatial-sampling 
(e.g. in clusters or stratified) and perhaps also consider situations with much 
sparser sampling. 
However, the workflow to conduct more elaborate SEM-experiments under these 
adjustments remains unchanged, and the scripts (Appendix 1) can be used as a 
template for these more extended analyses.  
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4 SPATIAL SAMPLING OF A CONTINUOUS 
PROCESS USING FIELD DATA 

4.1 Description 
In this case study the aim is to provide a relation between a classification-
performance criterion (the area under the receiving-operator curve - AUC), the 
spatial layout of two existing monitoring networks, observation densities (sub-
sampling from the current monitoring networks), different levels of species 
commonness/rarity and two different interpolation methods. The two different 
monitoring networks that are considered are MosKok1 and SIBES (Compton et al. 
2013) respectively. 
The two main questions of interest are: 1) whether there are systematic and large 
differences among the two monitoring networks (across the different levels of 
commonness), 2) whether there are systematic and large differences between the 
two interpolation procedures (across the different levels of commonness). The 
layout of this SEM-experiment is similar to that in case study 1, and detailed in 
Table 2. 
The sampling characteristics in this experiment are a bit complex. The reason for 
this is that MosKok and SIBES surveys apply different spatial sampling plans. 
MosKok samples lay along north-south transects with irregular distances between 
the sampling points. There are larger gaps between transects (east-west direction) 
than within the transects. The SIBES sample points are on a 500 m regular grid with 
additional sampling points randomly placed in between the main sampling points.  
SIBES has approximately 4 times more sampling locations than the MosKok survey 
(4400 verusus 1200 respectively). Furthermore both surveys use sampling 
instruments that differ with respect to sampling support. SIBES samples at 0.0173 
m2 (by boat) or 0.0177 m2 (on foot) whereas MosKok uses a 0.4 m2 (by boat) and 
0.1 m2 (on foot). In this analysis only the difference in spatial sampling design of the 
two surveys is investigated, while a note regarding the expected effect of the 
differences in support is added in the discussion.  
 
In order to compare both surveys in a meaningful way, similar data-densities are 
created by taking smaller samples from both data sets. SIBES data is sub-sampled 
from originally (around) 4400 to 2200, 1100, and 550 and 275 points. MosKok data 
is sub-sampled from originally around 1200 to 600 and 300 points. The down-
sampling is done in a nested way (each smallest subset is also part of a larger sub-
set), and points that are retained are selected randomly. In this way, the three 
smallest sub-sets from the SIBES data can be compared directly to the MosKok 
sets of corresponding size. 
  

                                            
1  Many IMARES/CVO publications that make use of the MosKok data (which forms 
 part of a larger benthos monitoring project in the Wadden and North Seas). The 
 following report describes the sampling properties of this survey: Craeymeersch 
 JA, Baars D, Brummelhuis E, Bult TP (2004) Handboek bestandsopnames en 
 routinematige bemonsteringen van schelpdieren. Stichting DLO, Centrum voor 
 Visserijonderzoek (CVO), CVO Rapport: CVO 04.004, pp 74. 
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Table 2. Summary of a SEM-experiment to evaluate the spatial layout of two 
existing monitoring networks (MosKok and SIBES) for estimating distribution maps. 
 
 
A - Type of process:   

Binary   Unconditional Gaussian simulation generating 20 
realisations; point-values at a grid of 100 m in the intertidal 
area of the Dutch Wadden Sea, using the following semi-
variance function: sv = 0.025(1-exp(-lag/1000)). An inverse 
logit-transform is applied to the resulting fields; subsequently 
four threshold values are used to determine presence or 
absence: 0.71 (very common, prevalence of 0.75), 0.74 
(common, prevalence of 0.4), 0.77 (rare, prevalence of 0.1) 
and 0.80 (very rare, prevalence of 0.01). 

B - Sampling 
characteristics: 

  

Existing sampling 
locations (MosKok and 

SIBES), downsampled to 
lower densities 

 1) 4400 points(SIBES) 
2) 2200 points (SIBES) 
3) 1200/1100 points (MosKok/SIBES) 
4) 600/550 points (MosKok/SIBES) 
5) 300/275 points (MosKok/SIBES) 

C - Estimation methods:   
Interpolation  

towards points  
 1) inverse dist. weighted interpolation 

2) kriging  
Hence, simple continuum-based interpolators rather than 
binomial models are used to model this binary data. 

D - Evaluation criteria:   
AUC, on the basis of 

classification at  
evaluation points 

 At 700m, with distances of 1000m; omitting any points that 
would require extrapolating beyond the convex hull of 
observation points. 

E - Analysis:   
Linear model  Relating the AUC to the 5 levels of sampling density, 4 levels 

of commonness and two different estimation methods 
 
 

4.2 Results 
An example of the fields generated in this case study is given in Figure 6, showing 
different levels of commonness. The four binary fields are created from a single 
continuous field by applying different threshold values. The huge range of 
commonness, covered by the four levels is clear from this example. 
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Figure 6. Example of a field with species occurrence (presence is indicated in 
green) at four levels of commonness. The upper map (a) shows a ‘very common’  
species with a prevalence of 0.75, b) shows a ‘common’ species with a prevalence 
of 0.4, c) shows a ‘rare’ species with a prevalence of 0.1, and d) shows a ‘very rare’  
species with a prevalence of approximately 0.01. It should be noted that prevalence 
is here defined as being present in a 100 by 100 m grid. 
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The main results of this case study are summarized in Figure 7, showing the AUC 
for all factors in this experiment. Along the y-axes of each plot the AUC-values 
(AUC varies from 0.5 up to 1, a value of 0.5 implies that a model has no better 
predictive ability than random classification). Along the x-axis of each plot the 
different sample sizes are shown (random perturbation in the x-direction is applied 
to enhance visibility). The two surveys are shown by different colors, the two 
methods by different symbols, and the four levels of commonness are shown in four 
different sub-plots. 
 
The patterns that appear from this are:  

1) The location of the SIBES observation points lead to a prediction that is 
systematically better than the MosKok locations; the difference varies with 
commonness (it is a bit larger for common species and almost disappears for 
rare species).  

2) The AUC-value increments with sample size along a saturation-curve, does 
not vary much among common down to rare species (prevalence from 0.75 
to 0.1) but drops considerably for very rare species (prevalence of 0.01). 

3) The difference between interpolation methods is small and not systematic 
across all treatments. For larger sample sizes and common or very-common 
species, kriging outperforms inverse distance weighted interpolation. For 
small sample sizes and rare or very rare species, the two methods lead to 
the same AUC values. 

4) From the rare to very rare class, it is not so much the decrease in AUC, but 
especially the increase in its variance along the entire range of sample sizes 
that is striking. Apparently the rarity is such that the distance among 
‘presence-patches’ surpasses the correlation length for the data in this 
experiment. 

 
If the experimental results for MosKok and SIBES are analysed separately, the 
model that describes the expected AUC best is comparable for both cases. It is a 
linear model with the number of observations, species commonness (4 classes), 
type of interpolator (kriging and inverse distance weighted interpolation) and an 
interaction term between species commonness and interpolator as predictors. The 
variance explained by this linear model for AUC is 0.70 for the MosKok data, while 
for the SIBES data (only analyzing the three smaller sample sizes – hence 
comparable to MosKok) it is 0.79. The details of this linear meta-analysis and its 
result are given in Appendix 2 (‘case2_analyse.r’). 
 

4.3 Discussion 
Similar to the case study for artificial data, it is clear that this experiment and its 
results cannot serve as a comprehensive evaluation of the MosKok and SIBES 
surveys. It does however provide a template to conduct such an evaluation. It also 
suggests that in order to obtain an overall impression of an optimal experimental 
plan, probably not the specific model form (two interpolators in this study) but other 
aspects like the rarity of the species/process under consideration and the specific 
error metric to be used are important factors to consider. In addition, the effect of 
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variations in area and volume sampled and other field procedures deserve more in-
depth investigation and could be incorporated in a SEM experiment. 
Only the spatial placement of samples has been evaluated with regard to MosKok 
and SIBES, assuming a 100% observability of organisms at a 100 m grid resolution 
(i.e. if it is present in a 100 m grid cell, the observation procedure will find it). A 
100% observability is a rather strong assumption, especially when considering the 
supports of 0.0173/0.0177 m2 (SIBES) to 0.4/0.1 m2 (MosKok). Knowing that 
patchiness in benthos is observed down to the meter-scale and that a considerable 
spatial randomness remains, it is likely that the 6 to 24 times larger supports in the 
MosKok survey has a considerable effect on the outcome (it may outweigh the 
differences in sample layout that have been studied here). To quantify these effects, 
SEM-experiments with fine-scale simulations of bivalve distributions would be 
required. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Relation between overall model performance (as measured by AUC), as a 
function of the number of observations. The data is broken down by survey type 
(red = MosKok, blue = SIBES survey) and type of interpolation technique inverse 
distance weighted interpolation (.) and kriging (+). 
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5 CONCLUSIONS 
The development of suitable monitoring plans for (long term) ecological research, 
requires an oversight over policy, management or science questions (ranging from 
applied to theoretical), practical field methods and limitations, knowledge of bio-
physical system functioning, statistical theory and state-of-the-art computational 
knowledge (e.g. Gitzen et al, 2012). It is and will always be difficult to bring this 
broad range of expertise together in an interdisciplinary project (leave alone a single 
person). And once the expertise has been brought together, it is difficult to translate 
all the relevant information between the various fields of expertise and generate a 
shared understanding. This report aimed to show that simulation-based 
experiments for monitoring (SEM) may be an appropriate communication platform 
among those different fields of expertise.  
 
The description of the general SEM-workflow and two specific case-studies with R-
code can hopefully help inter-disciplinary teams to specify, conduct and analyse 
similar experiments and thereby stimulate the exchange between (science, policy 
and management) questions, field reality and theoretical ideas. However, while 
aiming at keeping the code for this study easy to comprehend, the data-
management structure has been kept simple. As a result, some of the code is not 
sufficiently abstract to be transferred directly to a different study (e.g. to analyse a 
monitoring plan for trend detection) and would need some reworking. Furthermore 
some extensions and changes may be required to make storage and organisation 
of in- and output more efficient in larger case-studies and make post-processing 
output more informative for the question at hand. 
 
Getting back to the four characteristics of a good monitoring program by 
Lindenmayer and Likens (2010) (see introduction section), a SEM-experiment can 
provide a positive contribution to three of these: it does (by definition) provide a 
conceptual model of an ecosystem or population, and may in its function as 
communication platform also stimulate good questions and help to strengthen 
partnerships among scientists, policy-makers and managers.  
 
Finally it should be stressed that there is a considerable literature on the topic of 
synthetic experiments in ecology (e.g. Zurell et al. 2010; Austin et al. 2006), and 
there are many ecological studies where simulation-based experiments are used. 
Hence there is nothing new about the SEM-experiments that are described in this 
report. Three examples of studies where SEM experiments were used in designing 
monitoring plans are Bijleveld et al. (2012), who compare five sampling designs for 
a benthic monitoring program to find a pareto-optimum to detect temporal change, 
generate accurate maps and estimate autocorrelation; Joseph et al. (2006), who 
compare two strategies for detecting trend, abundance, and presence–absence 
surveys; and Nuno et al. (2013), who evaluate a range of monitoring components to 
increase survey accuracy and precision for typical ungulates in a savannah 
ecosystem. Differently from these studies, this report has emphasized the general 
SEM-workflow and provided simple examples to capacitate a wider group of 
scientists in using SEM-experiments. 
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7 APPENDIX 1 – CODE FOR CASE STUDIES 
The code for case studies 1 and 2 is stored at 
http://server3.walterwaddenmonitor.org/SEM_case_studies.zip  
 
The archive contains R-code together with input and output data. It contains the 
code and data used to generate the results in this report and is meant to 
demonstrate how simulation-based evaluation of monitoring (SEM) can be 
conducted. 
 
The code consists of a main script (separate for case 1 and 2: case1_main.r  and 
case2_main.r) which calls the various sub-scripts that correspond to the different 
steps of the SEM workflow (see Figure 1). The main-scripts contain an explanation 
of the in- and outputs by each sub-script. The various parameter-choices in the 
analysis are coded explicitly in the scripts (and not put externally in a parameter 
file). In addition a file with helper-functions is included (case1_functions.r). 
 
  




